
1

The QCDOC Project

P. Boylea b ∗, D. Chenc, N. Christb, M. Clarka, S. Cohenb, C. Cristianb, Z. Dongb, A. Garac, B. Jooa,
C. Jungd, C. Kimb, L. Levkovab, X. Liaob, G. Liub, S. Lib, H. Linb, R. Mawhinneyb, S. Ohtae, K.
Petrovb, T. Wettigef A. Yamaguchibg

aSchool of Physics, The University of Edinburgh, Edinburgh, UK

bPhysics Department, Columbia University, New York, USA

cIBM Thomas J Watson Research Center, Yorktown Heights, NY, USA

dBrookhaven National Laboratory, NY, USA

eRiken-Brookhaven Research Center, NY, USA

fInstitute for Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany

gPhysics and Astronomy, The University of Glasgow, Glasgow, UK
The QCDOC project has developed a supercomputer optimised for the needs of Lattice QCD simulations. It

provides a very competitive price to sustained performance ratio of around $1 USD per sustained Megaflop/s in
combination with outstanding scalability. Thus very large systems delivering over 5 TFlop/s of performance on
the evolution of a single lattice is possible. Large prototypes have been built and are functioning correctly.

The software environment raises the state of the art in such custom supercomputers. It is based on a lean
custom node operating system that eliminates many unnecessary overheads that plague other systems. Despite
the custom nature, the operating system implements a standards compliant UNIX-like programming environment
easing the porting of software from other systems. The SciDAC QMP interface adds internode communication in
a fashion that provides a uniform cross-platform programming environment.

1. Background

The QCDOC project is an international col-
laboration to develop a massively parallel super-
computer architecture tailored to the needs of
QCD simulations. The project has been centred
at Columbia University with significant contribu-
tions from the RIKEN-BNL research center, from
the UKQCD collaboration and from the Thomas
J Watson IBM Research Center.

Over the last four years, the project has devel-
oped a custom system-on-a-chip (SoC) applica-
tion specific integrated circuit (ASIC) containing
almost all of the components required for a self
contained compute node on a single chip.

First silicon for this ASIC was received in June
2003, and the process of bootstrapping up to very
large working prototypes has been carried out
over the subsequent year.

Three very large machines are now under con-

∗Presented by P. Boyle at Lattice 2004

struction: one for each of UKQCD, the RIKEN
institute, and the DOE SciDAC project [7].
These will contain 12,288 processors each (with
additional spares kept used in smaller satellite
machines). A sustained performance of over 5
Teraflop/s will be delivered by each of these ma-
chines on double precision QCD code, depending
on application efficiency.

2. High Performance QCD
Dynamical lattice QCD simulations at light

quark masses unavoidably require large amounts
of computational power to be applied to the evo-
lution of a single lattice.

This is most practically obtained by using
many microprocessors in parallel on the problem.
The memory and internode communication must
be capable of keeping the floating point units sup-
plied with data. Less capable systems fail to
deliver the “quality Teraflop/s” that enable the
dynamical evolution of practical lattice volumes

2

at high speed, despite delivering “Linpack Ter-
aflop/s”.

The principal goal is to maximise Krylov solver
iterations per second on a sensible lattice vol-
ume. This is the basic currency with which we
can choose can either purchase lighter quarks, or
more configurations as our physics research dic-
tates.

3. Latency considerations
Ultimately, a large machine cannot perform

more matrix multiplies per second than dictated
by the latency characteristics of its interconnect.
For MPI cluster interconnects around 5-10µs is
state of the art. With a switch style interconnect,
messages are typically sent consecutively, and the
latency paid 8 times per Dirac application.

By eliminating message passing software over-
head and slow bus structures, QCDOC reduces
latency to a fraction of a microsecond - compet-
itive with large shared memory machine. As we
shall see QCDOC further alleviates the impact
of latency by overlapping the latency of many
messages with hardware support for simultane-
ous launching of many transfers.

We note that the latency of interconnects is
fundamentally harder to improve than band-
width, and does not significantly improve with
Moore’s law. However, achieving the speed up
required to run five dimensional formulations a
factor Ls faster than on QCDOC is will prove
much easier than obtaining the same speed up
for a 4d formulation at fixed volume. Thus, in
the future, the fifth dimension in Domain Wall
and some formulations of the Overlap operator
will come for free, in the sense that it only costs
money and bandwidth.

4. Design Goals
The nature of QCD simulations may be ex-

ploited to simplify the design constraints for a
QCD machine compared with a supposedly ”gen-
eral purpose” massively parallel supercomputer:

1. The problem is naturally Cartesian allowing
for a simple Cartesian mesh network with nearest
neighbour communication used for parallel trans-
port of fields in coordinate space.

2. The only common non-nearest neighbour
communication is global summation.

3. Scaling at fixed problem size is required
(hard scaling). A small amount of high speed
memory on each node will accelerate the problem
when many nodes are used.

4. Both communication and memory access
patterns are deterministic and repetitive.

In addition to performance on QCD, we must
satisfy constraints on price, power consumption
and system density to minimise purchase price,
running costs, and floorspace.

The approach taken in the QCDOC design is to
make use of the enormous investment made by the
computer industry wherever possible, and add to
this only those features that push the advantages
described above. We use a low power embedded
processing core and add our own on-chip memory
and 6d torus network. This enables a very dense
and scalable system.

5. Hardware Architecture
The QCDOC ASIC integrates a number of

standard IBM Micro-electronics IP blocks with
some custom components developed for this
project. It has been fabricated in a 0.18µm mixed
logic and DRAM process allowing us to place a
large memory on chip, with a 1024 bit wide high
bandwidth access. While it has been described
at previous lattice conferences [1–5], we briefly
summarise the functionality.

The processing core is an IBM PowerPC 440 in-
teger processor with floating point co-processor,
implementing the BookE PowerPC instruction
set. There is an on chip bus heirarchy. The fast
on-chip Processor Local Bus (PLB) connects the
DDR memory controller to the PPC 440 core, and
can be thought of as analogous to the frontside
bus on a personal computer. The somewhat
slower on-chip OPB (on-chip peripheral bus) may
be thought of as analogous to the PCI bus in a
conventional system.

The QCDOC team integrated the bus structure
and a full set of standard peripherals around the
CPU. This includes interrupt controllers, the bus
arbiters and bridges, the on-chip single channed
DDR memory controller, a 100Mbit ethernet con-
troller and DMA engine, general purpose I/O,
and an IIC interface.

The custom parts used in this project include

3

a simple machine wide global interrupt tree, se-
rial communications unit (SCU), on chip memory
controller (PEC). An Ethernet-JTAG device pro-
vides debug and boot support over ethernet.
5.1. Serial communications network

The six dimensional torus network is imple-
mented in the serial communications unit. This
logic block is connected to the rest of the chip via
the PLB. Thus, our communications network is
integrated at a very high-level in the bus heirar-
chy, giving with access to the memory controllers
that is equal to that of the CPU. This in par-
ticular helps the QCDOC network deliver both
the low latency and aggregate high bandwidth
requirements of QCD compared with, say, clus-
ter interconnects implemented on PCI cards.

The electrical signalling technology is a
500Mbit low voltage differential signal, driven by
IBM High Speed Serial Link transceiver cores. 24
differential wire pairs provide bidirectional com-
munication for a six dimensional mesh.

The logical protocol was implemented at
Columbia, and has a fixed length packet size with
8 bytes data and 1 byte command header and
parity. This keeps the protocol overhead low.
Each packet is acknowledged and parity errors are
negatively acknowledged, triggering a retransmit.
Header options support partition wide interrupts,
and an interrupting out-of-band data path called
”supervisor” packets. Three outstanding pack-
ets are allowed on each link before progress halts
awaiting acknowledgement. This covers the max-
imum round trip latency, and allows the links to
progress at wirespeed.

The serial communications unit provides a bidi-
rectional pipe for communicating data with near-
est neighbour. The unit manages the 24 DMA
engines. Each of these DMA engines has 16
programmable descriptors for the block strided
moves appropriate to pulling faces from multidi-
mensional arrays. An arbitrary subset of these
DMA engines can be started using a single Pow-
erPC instruction.

Global reduction assistance is implemented via
a pass-through mode in the serial communica-
tions unit. After a modest synchronisation over-
head on entering the mode, the hardware will
implement the distribution of a value from each

node on a given axis to all nodes in that row.
In this way all nodes can obtain data from all
the other nodes. Any reduction operation can be
performed using the CPU with this hardware ac-
celeration of the communications pattern.

5.2. Prefetching eDRAM Controller
The PowerPC memory system has been en-

hanced with a custom component inserted be-
tween the processor and the PLB. The Prefetch-
ing Embedded DRAM Controller (PEC) provides
access to the 4MB on-chip memory at full CPU
clock speed, while passing normal memory re-
quests to the PLB. The PEC provides indepen-
dent interfaces to both data cache read and write
ports over the processor data bus (PDB), and pro-
vides an PLB port for use by the DMA engines
in the serial communications unit. The internal
interface to the embedded DRAM arrays is more
than adequate to cope with the maximum load
placed on the PEC by the PDB and PLB ports,
and this decoupled architecture allows the over-
lapping of communication and computation with-
out any contention. Wide 128 byte lines are read
and written from the DRAM arrays by the var-
ious read and write ports, and each port hard-
ware prefetches two independent read streams,
and double buffers write streams. Thus computa-
tional kernels with up to two sequentially stored
input streams and one output stream (which can
move arbitrarily in memory) will use the PEC
optimally. This optimisation strategy is shared
with many modern processors such as the Intel,
AMD, Sparc, and Power chips which have hard-
ware prefetch and write buffering, and should not
be considered a QCDOC specific optimisation.

5.3. QCDOC System Integration
The QCDOC system is composed of three cus-

tom printed circuit boards, plugged together as
building blocks. These are the daughterboard
(holding two QCDOC compute nodes), the moth-
erboard (holding 32 daughterboards), and the
backplane (holding four motherboards).

5.3.1. Daughterboards
The QCDOC daughterboard integrates two al-

most independent compute nodes on a single
board. The board has independent DDR mem-
ory systems for each ASIC, and an ethernet sys-

4

Figure 1. Signalling stability during Wilson
Dslash operation of the serial communications ob-
tained by overlaying many transitions aligned to
a reference clock.

Figure 2. 32 QCDOC daughterboards assembled
into a QCDOC motherboard.

tem including ethernet transceivers and repeater
yielding a single off board ethernet link.

One of the six torus network dimensions is
wrapped periodically on a board, and the remain-
ing five dimensions come off board. Signalling
quality is excellent, and we include a sample ”Eye
diagram” demonstrating the timing quality of the
High Speed Serial Links in Figure 1.
5.3.2. Motherboards

Figure 2 displays a populated QCDOC Moth-
erboard. This board provides a very high node
density enabled by our low power consumption
system-on-a-chip. It is air cooled, with air blown
in the channels between daughtercards. Edge
connectors can be seen, which carry serial com-
munication and ethernet links off board.

Three dimensions remain local to the mother-
board, one being local to the daughtercard, and
the remaining three dimensions come off mother-
board, creating a long range cabling problem that
is only three dimensional. Each motherboard car-
ries a total of 768Gbit/s of internode communi-
cation bandwidth.

Each motherboard contains eight separate eth-
ernet repeater systems (four daughtercards in

each), with 800 Mbit external ethernet band-
width. In large systems the aggregate bandwidth
is highly satisfactory: in fact throttling code has
been inserted to prevent the medium sized QC-
DOC systems from accidentally carrying out de-
nial of service attacks on the host.

5.3.3. Backplanes and cabinets
The large machines utilise watercooled cabi-

nets containing 16 motherboards each, grouped
in four slot backplanes. The ASICs are air cooled
with recirculated airflow passing over chilled wa-
ter heat exchangers. Two water cooled cabinets
may be stacked giving a low footprint 2Teraflop/s
machine.

All internode links are passed straight through
the backplane to cables, and are driven from
one ASIC through motherboards and cables to
a neighbouring ASIC without redrive.

A single clock source drives the entire machine.
The clock is fanned out but not phase aligned,
and the QCDOC ASIC dynamically locks on to
the phase of incoming data from its’ neighbours
and synchronises it with its own clock domain.

5.4. Host computer and disk system
The host computer for QCDOC is an IBM

pSeries 8 processor SMP server running AIX.
This machine and O/S combination was selected
by benchmarking the network I/O bandwidth of
a number of options. The host obtains excellent
performance at delivering ethernet packets to the
QCDOC nodes over its multiple Gigabit inter-
faces. Switch trees are contained within the rack
for the boot, diagnostic, and I/O ethernet net-
work. The top level switches are Gigabit, con-
necting the 100Mbit motherboard links to both a
host computer with multiple interface cards, and
to an array of network attached storage (NAS)
boxes embedded in the switch tree to make up a
high bandwidth parallel file system.

The packet download required to boot a 1024
node machine can be performed in as little as 12
seconds over a single interface, at 20% of wire
speed. This is substantially less than the DRAM
self test phase. Using multiple interfaces, the
large 12 cabinet machines under construction will
boot from cold in no more than a few minutes.

5

Figure 3. 4096 node prototype at Columbia.

5.5. Hardware Status
A 4 cabinet 4096 QCDOC machine, Figure 3 is

installed in the machine room and cabled as four
1024 node machines for shakeout. One machine
is fully debugged and running an initial test Stag-
gered AsqTad RHMC evolution at a 420MHz cpu
clock speed.

A further two 1024 node machines have nearly
completed shakeout, and will commence produc-
tion on DWF simulations soon. The boards to
populate fourth machine have been received and
it is undergoing initial debug. The first cabi-
nets for the UKQCD machine have arrived at
Brookhaven and are undergoing assembly, ca-
bling, and electrical tests.

6. Software Architecture

The QCDOC software environment is com-
posed of three key parts. Management software
on the front end computer, the operating system
running on the nodes, and the user run-time sup-
port libraries that present the programming in-
terface to physics simulation code.
6.1. Qdaemon

The host software principally consists of a
multi-threaded program called the ”qdaemon”.
The qdaemon implements all the QCDOC com-
mands that users execute, and provides scalable
high bandwidth access to boot and run code on
the QCDOC hardware. An enhanced shell, qcsh,
is used to access the qdaemon and this simply for-
wards all qcdoc related comands directly to the
qdaemon in a secure way.

The qdaemon provides full featured diagnostics
of the machine and has been continually refined to
identify all common failure modes hit during ma-

chine debug. It can divide a machine into many
partitions and handle multiple user connections
simultaneously to different partitions of the ma-
chine.

The boot process uses the on chip EthernetJ-
TAG to download a small boot kernel directly
to the instruction and data caches of each ASIC.
This kernel performs carefully logged chip initial-
isation and self test, DRAM bring up and test,
network driver initialisation, and then runs a sim-
ple bootstrapping protocol to allow the QCDOC
node kernel to be down loaded at high speed.

A number of different precedents exist for the
behaviour of input and output streams on parallel
computers. On QCDOC, by default circular print
buffers on most nodes, with node-0 printing to the
console. Qdaemon commands print kernel and
user print buffer logs. If this quirk is unpalatable,
arbitrary subsets of the nodes may be selected as
printing to the console, or library code may be
used to setup each node as having standard input,
output, and error connected to files on the host
disk system via the UNIX-like “dup2” call.
6.2. QCDOC node kernels

The QCDOC kernel architecture is very ad-
vanced for a custom developed platform. It con-
tains a flexible interrupt stack, multiple kernel
threads and one user process, an NFS client, an
RPC server and portmap daemon, and various
device drivers including a network driver and ker-
nel sockets implementation.

System calls are used to safely access priv-
eledged functionality, and provide a standards
compliant UNIX system call environment (miss-
ing process support since there is only one pro-
cess!) even though the operating system has
been written from scratch by members of QC-
DOC team.

The PowerPC virtual memory hardware is used
to protect the kernel space, but not no non-trivial
virtual memory translation is used. This makes
it easy to implement zero copy DMA direct from
user space, and avoids TLB miss overhead that
plague UNIX based HPC nodes. Time quanta
are not used, and so scheduler induced slow down
cannot occur. A sleep/wakeup event mechanism
is used to schedule kernel threads only on key
events, such as ethernet packet arrival, or inter-

6

node interrupts. The kernel RPC server and
portmap thread implement the protocol to allow
the host computer to control the node, and load
and start programs.

Several programmer friendly features have been
implemented, including PC sampling based pro-
filing, debugger support, automatic symbol table
parsing to identify the subroutine in which an ex-
ception occurs, and a dump of the processor con-
text on program termination.

The ASIC has many self diagnostic error detec-
tion mechanisms and if any of these are triggered
the program is terminated and cause identified.
Post-mortem diagnostic mechanisms can analyse
a ”hung” communications pattern, and identify
both programming errors and errant hardware.

The kernel’s ground up NFS client implemen-
tation is used to implement the disk system, and
greatly enhances the usability of this machine.
6.3. Disk system

The QCDOC disk system has been imple-
mented by writing a custom NFS client as part of
the node kernel. A simple model for the QCDOC
disk system is used.

Firstly there is a disk system shared between all
nodes, and easily accessible by users on the host
system. This disk is known to the nodes via the
directory ”/host”. A file on the /host filesystem
is globally visible to all nodes, and to the host
computer.

The second disk system is logically a per-node
private parallel disk system, known as ”/pfs”.
This may be thought of as analogous to clusters
having a ”scratch-disk” on every node. Note that
the QCDOC nodes are diskless, and implement
the pfs by NFS mounting a number of network at-
tached storage boxes. In fact, each NAS is shared
by as many as 256 nodes, each using a per-node
unique subdirectory. SciDac software will be pro-
vided for moving ILDG data to and from this
distributed file system, allowing QCDOC to have
very high performance I/O with the slow oper-
ations of serialising the I/O carried out offline.

6.4. Partitioning
The six dimensional torus network of QCDOC

is put to good use by allowing partitioning of the
machine in software. The machine may be sliced

Figure 4. Folding a two dimensional slice of a
machine into one periodic application dimension
restores the toriodal nature and reduces the di-
mensionality by one.

Figure 5. The folding process may be iterated
allowing partitions of one to six dimensions. We
show the remapping of a three dimensional ma-
chine to form a one dimensional application torus.

by software into six dimensional hypercuboids
along hyperplanes. Each partition is rendered pe-
riodic once more by folding together several of
the machine dimensions to form each application
dimension which meander non-trivially through
these machine dimensions using only SCU links
internal to the partition. Figure 4 displays folding
a 4×4 machine slice to form one periodic applica-
tion dimension of length 16. This process may be
iterated in orthogonal dimensions and a slightly
less trivial case of folding together 3 machine di-
mensions to form a single periodic application di-
mension (essentially the space filling loop) is given
in Figure 5.
6.5. Application Software

Several common QCD application codes have
been ported to and extensively run on QCDOC.

7

These include the Columbia Physics System,
Chroma, and MILC code bases.

6.5.1. Programming environment
We support both the GCC tool chain, and the

link compatible IBM xlC compiler suite. C++
templates, iostreams etc... are all supported, and
”new” and ”malloc” heap allocation requests de-
fault to the transient DDR memory discussed be-
low. We have ported the Cygnus ”newlib” em-
bedded libc and libm and implemented the O(30)
system calls to support this library in our cus-
tom operating system. This provides a standard
compliant UNIX-like environment for single pro-
cesses. This single process programming environ-
ment is sufficiently standard that few porting is-
sues have occurred.

As is common for MPP machines the QCDOC
programming model extends the Unix like envi-
ronment with libraries for message passing. The
message passing extensions take the form of both
a C++ interface known as the SCU library, and a
SciDac QMP compliant wrapper for this [6,7,2].
The one non-standard area lies with memory al-
location, and reflects both the directly address-
able embedded DRAM hardware and the nonco-
herent L1 cache in QCDOC. A “qalloc” routine
takes an additional argument specifying memory
type. The level-1 cache of the PPC440 CPU is
partitioned into transient and normal regions and
both communications buffers and large streaming
arrays should allocated as transient for best per-
formance.

7. Performance
Optimised Dirac operators have been imple-

mented in the context of the CPS by UKQCD [8]
(Clover, Wilson, DWF) and by SciDac/Columbia
[6,7,2] (AsqTad and näıve staggered). These will
all will be made available in various ways, and
the optimised Wilson code has already been inter-
faced to Chroma/QDP++ [9]. The UKQCD ker-
nels and linear algebra routines are generated by
a cross platform assembler generator and sched-
uler which will be made publically available and
will be the subject of a forthcoming publication.

Hybrid MonteCarlo Clover simulations have
been run on large machines, both 512 node and
1024 node. Performance as high as 47.5% of peak

Table 1
Double precision performance of QCDOC. Fig-

ures are as a percentage of peak. Current ma-
chines are running at 420 MHz for 840Megaflop/s
peak.

Action Volume CG Perf Dirac Perf
Wilson 24 32% 44%
Wilson 44 38% 44%
Clover 44 47.5% 54%
DWF 45 42% 47%

AsqTad 44 40% 42%
has been obtained in the inverter for this action
during the full HMC. Over 30% is achieved when
running from the DDR memory, and the HMC
has been run for periods in excess of 48 hours on
the recently debugged 1024 node machine. Code
optimisations may yield an increase in perfor-
mance in the future.

The final clock speed has not yet been deter-
mined: the current clock speed is 420MHz which
reflects a 60MHz improvement that has been ob-
tained since lattice conference by tuning DDR
memory timings, and SCU PLL options. A sim-
ilar additional speed up is possible in the future,
and 420 MHz is likely a lower bound. Table 1
displays the current performance of some popu-
lar actions, and additional results can be found
in [6].
8. Roadmap

The UKQCD and RBRC machines will finish
construction in late October. The DOE SciDAC
Machine will be completed in March 2005. They
all have over 12k nodes, and will sustain over 40%
of peak with at least 840 peak Megaflop/s per
node. The current 420MHz may be increased as
manpower is freed up from machine debugging.

REFERENCES

1. Nucl.Phys.Proc.Suppl.129:838-843,2004
2. eConf C0303241:THIT003,2003
3. Nucl.Phys.Proc.Suppl.119:1041-1043,2003
4. Nucl.Phys.Proc.Suppl.106:177-183,2002
5. Nucl.Phys.Proc.Suppl.94:825-832,2001
6. C. Jung, these proceedings.
7. http://www.lqcd.org/scidac, www.scidac.org
8. P. Boyle, in preparation.
9. R. Edwards and B. Joo, these proceedings

